快速发布求购| | | | | 加微群|
关注我们
本站客户服务

线上客服更便捷

仪表网官微

扫一扫关注我们

|
客户端
仪表APP

安卓版

仪表手机版

手机访问更快捷

仪表小程序

更多流量 更易传播


您现在的位置:仪表网>二极管>资讯列表>宁波材料所在高性能有机发光二极管领域取得重要进展

宁波材料所在高性能有机发光二极管领域取得重要进展

2024年10月12日 16:02:36 人气: 15544 来源: 中国科学院宁波材料技术与工程研究
  【仪表网 研发快讯】有机发光二极管(OLED)在超高清显示器(UHD)和照明应用中展现出巨大潜力,已经在各个显示领域(如手机等)得到广泛应用。但目前大部分研究都集中在发光分子的光物理性能方面,针对发光层薄膜性质及器件物理层面的探索相对匮乏,而有机薄膜的质量对有机半导体中的载流子动力学行为至关重要。在非/掺杂薄膜中,即使是微小的空隙也可以被水或氧分子渗透,形成水/氧诱导陷阱的电荷陷阱态,显著阻碍载流子迁移及复合。虽然非掺杂薄膜和晶态状态中的水/氧诱导陷阱已经得到了全面研究,但对于这些陷阱在掺杂状态下的性质仍缺乏深入探讨。
 
  为深入探讨以上问题,近期中国科学院宁波材料技术与工程研究所葛子义研究员、李伟副研究员和华南理工大学苏仕健教授等,在可控分子成膜工程增强载流子行为的机制研究中取得了重要进展。团队在本研究中提出了一种多功能分子设计策略,通过在分子结构中引入氟苯基团,设计了一种多功能分子DspiroO-F-TRZ。基于DspiroO-F-TRZ的热活化延迟荧光有机发光二极管(TADF-OLED)和敏化荧光有机发光二极管(TSF-OLED)分别展现出38.1%和37.6%的优异外量子效率(EQE),比基于未引入氟苯基团的分子DspiroO-TRZ器件性能有了大幅提升。
 
  该工作中的实验结果表明,在掺杂的DspiroO-F-TRZ薄膜的表面和内部形成了纳米级“簇”。换言之,掺杂薄膜表面和内部局部有序结构的存在是由于引入氟苯基片段所导致的分子内和分子间非共价相互作用。DspiroO-F-TRZ薄膜中的这种纳米级“簇”可以在掺杂薄膜中形成更均匀的形状,类似于流行的游戏俄罗斯方块,这可以显著减少缺陷态密度,优化载流子注入和传输特性,如图所示。修饰后的分子器件效率相对于修饰前提高了接近1倍,其他相关性能也有大幅度提升,突出了本研究的科学性及重要性,为未来的分子设计提供了新的思路。
 
  该工作以“Enhancing Carrier Behavior via Controlled Molecular Film Formation Engineering Leads to Significant Improvement in Electroluminescence”为题发表在国际顶级期刊Angewandte Chemie International Edition上(DOI: 10.1002/anie.202415856),张家森博士和华南理工刘邓辉博士为本文共同第一作者,葛子义研究员、李伟副研究员和华南理工苏仕健教授为本文的通讯作者。
 
  该研究得到了国家杰出青年科学基金(21925506)、国家自然科学基金(U21A20331、51773212、81903743、52003088)、宁波市重点科技项目(2022Z124、2022Z119)等的支持。
 
  图 (A) DspiroO-F-TRZ和DspiroO-TRZ的分子结构;(B)优化的分子构型;(C)类俄罗斯方块堆积示意图;(D) 载流子注入、传输和复合特性
关键词: 发光二极管
全年征稿/资讯合作 联系邮箱:ybzhan@vip.qq.com
版权与免责声明
1、凡本网注明"来源:仪表网"的所有作品,版权均属于仪表网,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:仪表网"。违反上述声明者,本网将追究其相关法律责任。
2、本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
3、如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
4、合作、投稿、转载授权等相关事宜,请联系本网。
联系我们

客服热线: 0571-87759942

加盟热线: 0571-87756399

媒体合作: 0571-87759945

投诉热线: 0571-87759942

关注我们
  • 下载仪表站APP

  • Ybzhan手机版

  • Ybzhan公众号

  • Ybzhan小程序